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Abstract—An analytical mode! for the vibration response of a curved beam is developed and
presented. The model is based on the solution (closed solution) of the dynamic differential equations
of equilibrium for an infinitesimal element vibrating out of its initial plane of curvature and allows
for inclusion of the effects of rotary inertia and; or shear deformation. Final solutions are presented
under the form of elements of the tip dynamic stiffness matrix for a free-free beam. The validity of
the model is assessed by comparison of theoretical and experimental results for several examples of
curved beams.

t. INTRODUCTION

Accurate knowledge of the vibration response of curved beams is of great importance in
many engincering applications such as the design of machines and structures.

Out-of-plane vibrations of complete and incomplete rings have been the subject of
interest for several rescarch workers. In 1944 Love[l] derived the equations of out-of-plane
vibrations of curved rods and presented an analytical solution for a circular ring. Den
Hartog(2] applicd the Rayleigh-Ritz mcthod to compute the lowest natural frequency of
circular arcs and his work was extended by Volterra and Morcll[3] for the vibrations of
arcs having centrelines in the form of cycloids, catenaries or parabolas. Wang({4] further
extended Den Hartog's work to vibrations of elliptical arcs. Later, Culver and Qestel(5]
and Wang ¢ al.[6] developed an analytical technique to derive the natural frequencies of
multispan circular beams.

The previous studies were based upon the classical theory in which neither the rotary
incrtia nor the shear deformation are taken into account. More accurate models were
presented by Rao[7} and Kirkhope(8] who studied the ree vibration of circular rings based
on the Timoshenko theory[9]. Using the transfer matrix approach Irie e al.[10] determined
the steady state out-of-plane response of a Timoshenko curved beam with internal damping.
More recently Wang er al.[11] obtained the dynamic stiffness matrix for a curved beam.
However, in Wang er al.’s work the effects of rotary inertia and shear deformation are
not completely included as a consequence of neglecting the term which takes into account
the effect of rotary inertia due to the rotational (torsional) vibrations which are coupled to
the flexural vibrations. The purpose of the present work, is to present an analytical model
where the dynamic stiftness matrix elements allow for inclusion of the full effects of rotary
inertia and/or shear deformation. Theoretical results are confirmed by experimental analy-
sis, for several examples, and arc compared with results obtained using Wang et al's
modecl[l 1] showing that the latter fails to provide accurate responses.

2. MATHEMATICAL FORMULATION AND SOLUTIONS

Let us consider an infinitesimal element of a curved beam with a cross-sectional shape
which is assumed to remain constant along its entire length and doubly symmetric, i.c. the
shear centre and centroid coincide. Due to double symmetry in-plane vibration response
and torsion will be uncoupled. However, a coupling of the out-of-plane normal bending
and the torsional responses will exist and will be discussed here.

Figure 1 shows an infinitesimal element of a curved member where intcrnal forces V,,
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Fig. 1. Forces and displacements on a differential element of a curved beam in out-of-plane vibration.

M, and M_ are represented as well as the related displacement ¢ of the centreline and the
rotations ¢, and ¢. of the local axes during deformation.

Rao{7]. using Hamilton’s principle and neglecting the warping deformation of the
cross-section obtained the following dynamic equilibrium equations:
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The transverse shearing foree 1, is given by
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where R is a numerical factor which takes into account the variation of the shear defor-
mation ff, through the cross-section, and is constant for any given cross-section[12]. The
shear deformation is related to the slope of the transverse deflection v by

| Qv

Ry = Pt )

The moment-displacement relationships, considering the effect of shear deformation,
can be expressed as
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Substituting egns (4), (6) and (7) into the equilibrium equations, eqns (1)~(3), and
noting eqn (5). onc obtains[13]
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Assuming now that the curved member is excited harmonically, with a frequency w,
we have

e(0, 1) = V() e’ (11a)
$.(0.6) = b (0) e (11b)
$.(0,1) = d,(0) ¢ (1¢)

and
V(0,0 = V,0) e (12a)
M (0,1) = M (0) e (12b)
M.(0,1) = M.(0) e (12c)

Substituting egns (11) into eqns (8)-(10) and noting that the value of d¢./08 obtained
from the resulting eqn (10) was introduced in the resulting eqn (9), one obtains

d*v(0) d*v(0) d2v(0)

gt A g F AT g F AV (0) = (13)
&SV VO dro)
R(D‘(()) = Co{C5 d05 +C3 d()] +C| d0 (14)
d*V(0) d*v ()
R®D.(0) = Bs{ qov B tBe V(O)} (15)

where the values of the cocfficients A, A, Ay, Ce. Cs, Cs, C\, By, B, and B, are given by
the expressions presented in Appendix A.

It can be seen that © () and ®.(0) are functions of V(0) only, which in turn is a
solution of the lincar differential equation, eqn (13), and can be rewritten as

V() = [DO}{X)}. (16)

The expressions for the elements of the row matrix [D(8)] are given in Appendix B,
for the different roots of the auxiliary equation the solutions of which are also presented in
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Appendix B. The elements of vector {X} are the six constants X, that can be determined

from knowledge of the boundary conditions.
Thus the displacements of the centreline for a given value 6 can be expressed as

Vo)
10}e = {RO(0)p = [A(D]{ X} (17
RO_(6)
where matrix [4(#)] is given by
[D(O)]
(18)

[AO)] = | CICJAD™ O]+ C: D@+ C [P O]
B{[[D™(0)]+ B.[D"(O)] + B, [D@]]

where the primes represent differentiations with respect to 0.
Substituting eqns (11) and (12) into eqns (4), (6) and {7) and omitting the common

term e yiclds

F(0) il
Py =M (HR} = 'R"" [BH]{X} (19)
M.()/R
matrix {B()] being given by
Vis[ DM O]+ Vs [D"(0)) + V, [D"(9)]
(20)

(BO)] = | M([D™(O)]+ M [D(0)]+ M [D"(0)] + Mo[D(O)]
M s[DV O]+ ML[D"(O)] + M., [D(0)]

where V. M, and M, are coeflicients given by the expressions presented in Appendix A.

3. DYNAMIC STIFFNESS MATRIX
The generalized displacements and forces associated with the tips of the analytical
model of our curved beum are shown in Fig. 2. Vector {8} representing the generalized
displacements at each end of the curved member can be written as

Fig. 2. Positive gencralized forces and displacements associated with the model of a curved beam
(note that F¥, F$, Ftand F§represent F R, F\R, F.R and F R, respectively, and 8%, 3%, 5% and 58
are equal to 8,/R. 3R, 64/R and 3,/R. respectively).
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r V(O) ~N
RO (0)
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with matrix [4] given by

(4@
(4] = E{’(;)EI-

Similarly, vector { F} representing the generalized forces at the tip of the curved member
can be written as

r F[ ~ r f}}(o) BN
F M (0)/R
F M.(0)/R El,
(Fl=4 =101 o = grielBx) e
Fy 81 (0)/R
LF ) [ M.(2)/R )

with transformation matrix [Q] and matrix [B|] given by

10 00 0 0]
0 1 0 0 0 0
00 -1 0 00
@=1 90 01 0 o0
00 00 -1 0
L 00 00 o0 1]

and

B(0)
8] = {é@]'

Using eqn (21) vector {X'} can be related with vector {3} through the expression
{X} =[A]""a}. (23)
Substituting into eqn (22) onc obtains
F} = K9] (24

where matrix [Ky] is the so-called dynamic stiffness matrix, and is given by

El,
[Ks] = o~ [Q118] (417" (25)
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4. INCLUSION OF STRUCTURAL DAMPING EFFECTS

The derivation of the expressions previously presented was carried out making no
reference to the energy dissipation effects. However, structural damping must be accounted
for if one intends to obtain accurate results particularly near to the resonance frequencies.
Inclusion of the effects of structural damping in the dynamic stiffness expressions is an easy
task and can be done considering the complex representation of E and G[14]

E* = E(1+ing)
G* = G(l+ing)

where 5. and n; represent the loss factor associated with £ and G, respectively. For our
purpose 7, and ns can be considered as having the same value and being frequency
independent. Hence the elements of vector {F} and {8} and of matrices [4,) and [B] are
complex quantities, for the damped model, and can be obtained from the corresponding
elements in the real matrices derived for the undamped model. simply by replacing £ and
G by their corresponding complex representations £* and G *.

5. PRESENTATION OF RESULTS

In order to assess the validity of the derived theoretical model, it was decided to test
scveral curved beams with different cross-sections and different radii of curvature as shown
in Fig. 3. The frequency range of the experimental analysis was chosen to cover the first
four or five resonance frequencies of the test beams. Accuracy was of great concern and
therefore the test procedure was based on a step-by-step harmonic excitation using a
Transfer Function Analyser, thus measuring the acceleration response/force excitation
relationship for cach exciting frequency throughout the test range. Acceleration and foree
were measured using small piczoclectric transducers together with signal conditioning
amplifiers and the excitation was provided by means of an clectromagnetic shaker driven
by the Transfer Function Analyser through an adequate power amplifier. Calibration of
the transducers was carcfully verified[14] prior to the experimental analysis. The exciting
force was applied in a direction normal to the plane of curvature of the beam and the
acceleration response was measured in the same direction, the measurement points being
chosen at the tips of the test beam. Experimental results are presented in terms of the §/F
relationship (inertance).

Figure 4 is presented as an example of the results obtained. The curves displayed allow
for comparison of the direct inertance d/F measured at the tip of a curved beam with the
theoretically derived responses using the model presented in this work and classical theory.
An extra theoretical curve according to Wang er al.’s model[l 1], is also presented.

Similar results were obtained for all the other measured response curves and for all
the test beams. They are not presented here in order not to extend too much the size of this
paper. Table | summarizes the results in terms of the values of the resonance frequencies,
taken from the response curves, for different curved beams. The results obtained from the
model presented in this paper are clearly better than the ones obtained with classical theory
or with Wang er al.’s model, when compared with experimental data. There are still some
discrepancies between the theoretical and test results, the latter presenting consistently
lower values for the resonance frequencies. It is believed that this is mainly due to the test
conditions where, for example, the additional mass of the transducers contributes to lower
the experimental resonance frequencies.

Table 2 shows the influence in the results when rotary inertia and shear deformation
are included in the model. For example, it is clearly seen that the effects of rotary inertia
are mainly felt below 90°.
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Fig. 4. Dircct inertance at the tip of a curved beum (v = 0.288, K = 0.849, p = 7755 kg m **,
E=209 GPa, I, =436Yx 10 * m', R/h =10, R=0.16 m, x =270"): AAA. experimental

vilues ; —-, present model; - - - -- . Wang et al.’s model[l 1] — . — . —, classical theory.

For the same beams, with different radii of curvature, the variation of the values of
the resonance frequencies with the corresponding angle x is presented in Fig. 5. It can be
secn that the resonance frequencics tend to those obtained for a straight beam when the

radius of curvature is large. This fact further validates the theoretical discussion.

Table 1. Resonance frequencies for different curved beams: (A) classical
theory ; (B) Wang et al.’s model[l11]; (C) present model

R, R, R, R,
A 796.75 1466.1 2642.5 3458.5
30° B 78287 1418.6 2494.2 3675.0
C 632.36 779.6 1570.7 21534
A 721.2 1421.2 2562.5 3550.6
60" B 715.46 1376.0 24248 3459.3
C 707.29 1046.4 1671.2 2167.4
A 639.18 13518 2456.0 36142
90" B 630.2 1310.7 23288 34513
C 620.25 1190.2 20222 2136.2
A 400.3 1067.2 2074.1 33704
180" B 400.2 1047.8 1992.5 31434
C 391.05 1007.2 1882.2 2818.0
Exp. 875 967.6 17175 2763.0
A 254.2 792.9 1690.5 2910.3
2707 B 255.0 784.1 1638.2 2752.0
C 250.8 760.4 1564.2 2580.0
Exp. 250.5 747.1 1487.5 2460.2

Note: The length of the different beams has the same value 0.754m. and
the same cross-section dimensions 0.016 x 0.032m.
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Table 2. Comparison of values of resonance frequencies obtained using different

models ; (A) classical theory—rotary inertia and shear deformation neglected ;

(B) rotary inertia included and shear deformation neglected: (C) present
model—rotary inertia and shear deformation included

R, R: R R,

A 796.75 1466.1 2642.5 3458.5

30 B 634.21 786.33 1605.1 2162.4
C 632.36 779.6 1570.7 20534

A 727.2 [421.2 2562.5 3550.6

60" B 712.36 1053.5 1700.8 20978
C 707.29 1046.4 1671.2 2167.4

A 639.18 1351.8 2456.0 3614.2

90 B 623.42 1203.4 2045.6 2180.2
C 620.25 1190.2 2022.2 2136.2

A 400.3 1067.2 2074.1 33704

180 B 395.81 1023.4 1927.9 2864.3
C 391.05 1007.2 1882.2 2818.0

A 2542 7929 1690.5 2910.3

270° B 2537 T771.19 1596.9 2657.8
C 250.8 760.4 1564.2 2580.0

Finally. Fig. 6 is another example presenting the response curves for the particular
case where the angle a is 60, and shows clearly that Wang et al.’s model[11] fails to predict
accurate and complete responses. As stated previously these inaccuracies are due to
neglecting the rotary inertia associated with the coupled torsional behaviour of the curved
beam.

6. CONCLUSIONS

An analytical model for the out-of-plane vibration response of curved beams was
derived. The coupling of bending and torsion responses was taken into account and the
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Fig. 5. Variation of the resonance frequencies with corresponding angle x: ——, present model ;

------ . Wang ef al.’s model{11].
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Fig. 6. Example of transferred incrtance obtained for the particular case where the angle a is
60 . present model ;- <-4+ . Wang et al.’s model[l 1}.

odel allowed for inclusion of the full effects of rotary incrtia and shear deformation as

well as structural damping. The final theoretical expressions were presented in terms of the
clements of the tip dynamic stiffness matrix. It was shown that the rotary inertia associated
with coupling with torsional effects cannot be neglected, by comparison of results with

th
m
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ose obtained using such a model. The validity of the analytical model was confirmed by
cans of experimental analysis.
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APPENDIX A

Coefficients of egn (13)

l
Ay = 2+qr(t+$)+qs
at+b . I g’
= | - Y3 e — - —_ LA
A, =1~-q+2¢s qr( prs )+q rs(l+ab)+ pra
q s fa+by ¢r L1
Ag=yras-a rs( ab ) b T

with

_ pAR‘w?

T, {bending effect)}

r= (rotary incrtia effect)

I
AR®
£l
T K'GAR?
C.

s {shear deformation cilect)

°
where C, = xGJ., with ¥ a constant depending on the cross-section form
b= -t
J.'

Cocflicients of eqn (14)

Cy = afl{grs —as = 1Y {1 —gqr/b}}
Cy=3s

! b3
Cy= ,v+qr.s(l + &5)+qs

C, =2 : i 2pel 1 i qr
=245t —gs—a+qgors +ab +ab'

Coefficients of eqn {13)

By = a/[(1 - gr/b) (1 +a)]

2 142a
By = —g+grs+ys —

CoefBicients in matrix { B(()]—expression {20)

Vs = =T,
V= —-C“C’,
V,‘ = C&C'l

with coefficients C', and | given by
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1
Cy= 2+qr<l+a—b)+qs

Crmgmtrg ) c2ge- T (14 L
1 =¢—1l+gr 2b —..qs—ab q-rs b

M= —C,C;s

M. = B,—C,C,

My, = B:8,-C,C,
My, = BB,

M. =a(C,Cs+ By)
M., = a(C,C,+ B58B;)
M., = a(C,C,+ B,By).

APPENDIX B
The characteristic equation associated with eqn (13) is given by
AL+ A +4,=0.

In order to obtain the Cardan form we can assume A° = y— A44/3 and then

'+ 4+ =0
with
M=A,-A43;3
L2 1
= 27,4,:— jA‘A:-G-A‘,.

The discriminant of this polynomial is given by

r- m
A= 4 + :.’i

The roots of eqn (B2) depend upon the sign of A. Three cases are possible:

(1) A <0, three real and unequal roots ;
(b) A =0, three real roots of which at least two roots are equal ;
(c) A > 0, one real root and two complex conjugate rools.

The solution of eqn (13) can be expressed as
Vo) = [DWO){X}.
Hence, matrix [D(#)} can assume three different forms.
Case (1): A <0, i.¢. three negative roots, v, vy and 3,
[D()] = [cos (4,0) cos (4,0) cos (4,8) sin (4,0) sin (4,0) sin (4,0)].
Case (2): A < 0, i.c. one negative root 7,
[D(O)] = [cos (4,0) cosh (4,0) cosh (4,0) sin (4,0) sinh (4.0) sinh (1,0)].
Case (3): A > 0, i.c. one negative root ¢, and two complex conjugate roots

(D(O)] = [cos (4,0) cos (u0) cosh (v8) cos (u0) sinh (VO)]

sin (4,0) sin (u8) sinh (v0) sin (u0) cosh (v0)

283

(B1)

(B2)

where 4 is related to y as shown previously and v and u are the rcal and imaginary parts, respectively, of the

complex roots.

APPENDIX C: NOTATION

x, v,z curvilinear coordinates along centroidal axes
v(0.1) displacement of the centreline along the y-axis
V(0) modulus of v
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@ (0.0, ¢.(0, 1) angular rotations along x and . respectively
(). 9.46) modul of ¢, and ¢.. respectively
V', shear force along the y-axis
F(8) modulus of V',
A, moment about the x-axis
M. torque about the z-axs
M (0. M0 moduli of M, and .. respectively

. torsional stiffness
polar moment of areu about the z-axis
second moment of area about the x-axis
Young's modulus
shear modulus
mass density
radius of curvature
area of the cross-section

~

wnaT QM

V-l
frequency
time.
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